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AN ANALYSIS OF THE VARIOUS METHODS USED TO ANALYZE
RADIATION FROM THE THIN WIRE Z2-FIELD INTZGRAL EQUATION

i Tapan K. Sarkar
ABSTRACT

In this paper we analyze the numerical aspects of the various methods
that have been used to analyze thin wire antenna problems. First we derive
some properties of the thin wire E-field integral operator. Based on those
propertises we unify the various iterative methods used to find curreant distri-
bution on thin wire structures. Am attempt has been made to resolve the gues~
tion of numerical stability associated with various entire domain and subdo-
main expansion functions in Galerkin's method. It has been shown that the se-
quence of solutions generated by the iterative methods monotonically approaches
the exact solution provided the excitation chosen for these problems are in
the range of E-field operator. Such a statement does not nold for Galerkin's
method since the inverse operator is unbounded. Moreover if the excitation

‘function is not in the range of the operator the sequence of solutiouns form an

apyupcocic series. Examples have been presented to illustrate this point.
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I. TINTRODUCTION

Over the past thirty years several methods have been developed By
various researchers to analyze scattering and radiation from thin wife
structures. In this presentation we investigate the properties of the
integrodifterential equations by various techniques which impose boundary
conditions on the electric field only. Se we restrict our discussions to
the E-field integral equation.

For simplicity let us focus our attention on the reradiation of
electromagnetic waves by a thin wire of radius a and of length L centered
at z = 0. In this analysis we will assume that the antenna is quite thin
and hence the circumferential variation of the current on the antenna
can be neglected. We shall also neglect any § component of the current
on the structure. Furthermore, there are no internal resomances of the
thin wire at the frequency of operation. With the#e assumptions we
derive the properties of the E-field operator for both the Pocklington

and Hallen's equations.
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2. PROPERTY OF THE POCKLINGTON E~FIELD OPERATOR
By assuming a time variation of the form exp (jwt) the Pocklington

integral equation for the current on the surface of antenna can be written

as [1]
H/2 o , Hi2 2w
kz f dz f d¢ 1(z') G(z,z') + 2—2 f dz' [dp I(z') G(z,z') = -jm4wsEi(z)
-L/2 o z” -L/2 o
for - % <z<+% )
where G(z,z') = I ; kR (2)
R=7 (z-i')27+ 4a sinz‘% 3
Ei(z) = incident field on the antenna %)
In the operator form (1) can be written as
prd®p 14p 1=V (5)

1 2
We next investigate if there exists a constant C independent of I such
that [2, p.296]

|| 2]} = max LBELL . max lle1]} < ¢ )

[zl x| =1

If such a constsnt C exists which is the maxiwmum of all possible {|PIj|
with the constraint ||I|| = 1 then we say the operator is bounded with
respect to that norm |[+|[. The norms that we shall be dealing with are
the .}’2 nors and the Chebyshev norm . The xz porm is defined as

/2
=t [ 11(0))? 481/ Q)




and the Chebyshev norm is defined as

Hrl] = max I1()] (8
T

€ z< <+

(X[
()] )

When no subacripts are used either norm is implied. If
we are using the sz norm then we are restricting the domain of the oper-

ator P to elements which are in.)fz (or square integrable). This does not
L

2 L]
However only those type of singularities are permitted in I(z') which are

imply that I(z') cannot be infinite within the range - % <z' <+

square integrable. Any function which is not square integrable is ex-
cluded from the domain of P (as they are not in }fz). On the other hand,
if we use the Chebyshev norm then the function has to be bounded. Under
the Chebyshev norm any unbounded function cannot be in the domain of the
operator. Thus the function log z 1sin2? but not in the domain of func-
tions bounded under the Chebyshev norm. Physically then convergence of a
sequence of functions under the éfz norm yields least squares convergence
whereas convergence under the Chebyshev norm yields pointwise convergence.
Examination of the first part of the integral in (1) reveals that
the kernel has a singularity which can be observed by rewriting the kermel
as (3, p. 141}

2n 2n
I “ G(',I') - -z% I _.!P_n(_‘.ﬂ_‘!'). dp = log lz - z'l + Gz 9)
o o

}

vhers Gz contains terms which are bounded and hence square integrable.

The singularity of the kernel in P. is manifested through the function

1
log |2 - 2'|. Since a lograthmic function is square integrable we find

-3-
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g

+L/2 +L/2

i[fdz [ az'

M 2,1/2
iz, 22 L2 -2 ] ¢

{log |z-2'| + Gz} < (10)

vhere C is a constant. Hence Pi is bounded under the :é’z norm. Furthermore
?1 is a Hilbert Schmidt operator as it has a square integrable kernel
{2, p. 352}). It can also be shown that a Hilbert Schmidt operator is

a compact operator [2, p. 353]. Under the Chebyshev norm

+H/2 +L/2
||P1||.r_<_ max [ dz' log |2-2'| +-:x L fdz'lczl

Legeallan -3+ U2
2—-"="2

- BAX I(z+%) log(z +%)+(%-z) log(%-z)—Ll-l-constant
L

-—2°%<3

<M ( L L

< a constant) for all - i:zi+f (11)

Hence the operator Pl is also bounded under the Chebyshev norm.

Mext consider the second integral in (1). We have

+L/2 +/2
9 '} 4 ) )
P,I= = [d2'* £ {log |z-2'| + G} = § d2' £ . {log|z-2'| + G,}
2 iz L2 oz’ 2 L/2 iz' 9z 2

0000(12)
vhere the bar over the second integral represents a principal value. It

is clear that the operator Pz in (12) is unbounded under the Chebyshev

norm, because %. is unbounded as z + + % . Thus there exist no
constant C for all -%< g < +-;=ouch that

lIPyllp<ccm

o R A




Also the operator Pz is unbounded under thef norm as gI, , and

%-z- {log |z - z'| + Gz} are not square integrable.
However if the antenna has no edges (i.e. %:—. is everywhere bounded

and square integrable) then it can be shown that the operator P, is bounded

2
under the £ 2 norm. Sneddon has shown through Theorem 8 [10, p. 234] that

if f(z) is square integrable over - %‘- <zX< % and zero everywhere else

f}(t)log t -2l 4

then the formula }H(z) = - T

wdz

defines almost everywhere a function ?B(z) which is also square integrable, and

f@lle, = @iy,

Hence if the antenna has 1o sharp edges then the operator P2 is bounded

under l:he,,;'(2 norm as illustrated by the above theorem. In other words,

if the antenna has end caps then the Pocklington E-field operator is bounded.
Hence the Pocklington E-field operator, P = Pl + Pz is unbounded if

the scatterer has a sharp edge at which the charge density becomes

infinite. However if the antenna structure is quite smooth, so that at

each point the tangent to the surface can be defined uniquely, then the

Pocklington E-field operator P = Pl + P2 is bounded under the 12 norm.

Next we consider the Hallen E-field operator.

3. PROPERTY OF THE HALLEN E-FIELD OPERATOR
Hallen transformed Pocklington's equation as given by (1) into the

following integral equation

+L/2 27X
f dz’ f d$ 1(2')G(z,2') = D cos kz + F sin kz +
-L/2 0
dx ! El(2) sin k(z ~ 2') dz' (14)
=L/2
-5-
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where D and F are constants which depend on how the current goes to zero
at the ends of the antenna. We define the Rallen E-field operator as

+L/2 2w

HI = [ dz' [ d¢ I(z') G(z, 2') = P, I [from (1)] (15)
-L/2 o

H ence the operator H is bounded both under the f and the Chebyshev norm.
Also H is a compact operator under the 8,2 norm.

It. is important to not':e however, that the unknown I(z') is hidden in
the constants D and F. To illustrate this further, if we consider a delta

gap excitation for the antenna then (14) becomes {4, p. 325]

+L/2 2
[ dz' [ d¢ 1(z') G(z, 2z') = A sin k |z| + D cos kz
~L/2 o

where A is a known constant and D is unkown. Observe at z = 0

+L/2 2«

D=-1dz' [ d¢ 1(z") €(o, 2")

-L/2 o
If the operator H is bounded so will be the constaat D. If onme wishes
then perhaps onme can transfer D to the left hand side of the equation
and thus form an additional part of the operator H. But since D is a
part of the operator H, whatever bounds hold for H also hold for D.

Next we estimate a bound for ||H|| both under the ¥ and Chebyshev

norm.
We observe
+L/2 2n
1 ' e =1k R
[la]] & ™% 5= [ dz' [ d¢
T --;iszs-v-% 2" 2 o R
‘6-




max +L/2 2w
< -1
- dz d¢ —=
-5 £z<+ L 2" ILIZ ¢{ R
2 - 2
= max [2 log , log 2L ] + O(a )-{3, p. 144] (16)

where © (az) denotes terms of the order of a2. Now 1if -E— >> 1 then

lEl| <2 108 2 an
T
2
Under the z norm
L/2 +L/2 27 2 1/2
)| [ g [ae ([ a exp(-ikR); -
}-L/Z }-le f }2 1/2
<[ [ dz dz' d¢ - 1
-~ /2 w2 o T
<o % log %] + other terms : (18)

The above integrals may be evaluated numerically to give a more accurate
estimate for ||H|b2.

As H is bounded operator unlike P, it may be computationally much
easier to solve Hallen integral equation than Pocklington integral

equation.

4. SOLUTION OF HALLEN E-FIELD INTEGRAL EQUATION

4.1. By Iterative Methods

It is well known that if H is a compact invertible operator (under
2

Y norm) on an infinite dimensional Space then its inverse is often

unbounded [3, p. 353]). Hence the problem of the solution of (14) in the




T

&fz norm ig ill-posed. If a problem is ill-posed under the ]g norm then
it is definitely ill-posed under the Chebyshev norm. However it can
be regularized in the following way. We take (14) and cast it in the
form

HI = Q (19)

and generate the sequence {In}

I =[U-TH I

+1TQ (20)
with a starting guess of I° = Q and U is the identity operator. The
sequence In generated by (20) converges to a solution I which satisfies

HI = Q for all Q in the range of H [1, p. 196]. The sequence generated

by (20) always converge to I provided

[l (u-1H]] <1

or lef » laj} = {lta-v+ul] <|lu-<8[]+]]o]] < 2

or T:T > 1_[_125]_[ . (21)
2

In (21) ||H|| could be either the & or the Chebyshev norm depending

18]
2

and Q in the range of the operator H, the iterative process defined by

on the type of convergence desired. For all values of T%T >

(20) will always converge monotonically to a solution I(z'), if it exists.
This has been shown in Theorem 2 (in the appendix). By the terms of
Theorems 1 and 2, the iterative process will converge for any starting

value I 1if
[+]

{injl,,2
1 , & . 1 - e(%log -:'—) (22)

I_rlxzz




(when convergence is desired in fz norm); and

L Dl

|TTT > 2 or -I-,—]['-I-; 2 103% (23)
(when convergence is desired in Chebyshev norm).
Observe if afz solution is desired and on; chosses T according to (23)
it is quite possible that the iterative method described by (20) may
not converge at all. Therefore if we are solving for the current distribution
on a thin wire due to a delta exclitation the value of T chosen should be
0 [% log %] instead of the popularly used value of T = 2 log %. This is
because the current has a logarithmic singularity at z = 0 and so convergence
of the various iterations can be guaranteed only in anf sense.
Hallen in his classic iterative scheme chose the value of U as given
by (23) [3, 4). A detailed description on how D is solved for at each
iteration is described in detail {4, p. 326]. Observe that if % > -ug—-u-
or ||u - T H|| < 1 then the iterations defined by {(8.149) and (8.150) of
[4]} would always converge f.or any starting guess Io.
Other researchers have chosen different values of T. For example
Gray [5] chose
%-Real [2 log%-Zy—Zlog%—-jn+2Ei (- 1y, (24)
where Y is Euler's constant and Ei is the exponential integral. King

and Middleton [6] decided to make

L/2
-:-- | e - -Z);- » z') sin kz' dz’'. (24.a)
0

Whereas Siegel and Labus [7] chose

1 L sin kL
- 2 log ~ ~Cin (kL) - 1 - L (25)




Where Cin is the special form of the cosine integral. Finally Schelkunoff
[3] after a careful analysis decided
% = 2 log %- Cin(kL) - 1 - 5’%‘1‘-— - Sin(kL) + j -1-15;-215‘—”‘(25-61)

In general, it really does not make any difference whatsoever, what
value of T one chooses, one is guaranteed to have pointwise convergence
or convergence in the mean depending on whether one chooses T according
to (23)or (22). This of course assumes that a solution to the problem
exist, i.e. Q is in the range of H.

In summary, the iterative method convert HI = Q, a Fredholm equation
of the first kind to In =B In-i + 1Q, as Fredholm equation of the
second kind. The advantage of the equation of the second kind is that
{{{u - B]{| is not only bounded but its inverse ||[U - B]_1|‘is also
bounded, provided unity is not an eigenvalue of B. Mathematiéally one
has regularized the problem by the introduction of the parameter T.
With this regularization scheme the convergence of the sequence In is
monotonic.

Finally, we conclude by noting that as the iterative process
continues the unknown constants D and F in (14) are determined as out-

lined in [4].

4.2, By Galerkin's Method

The next generation of the methods were developed primarily by
Harrington [8] under the generic name of "moment methods." This very
popular versatile method has been excellently documented in [8]. In

Galerkin's method, the unknown function I is expressed as

-10-
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N
L) = [ a ¥,(2) (20

i=]1
where ?1(2) are known functions which may extend from - %-f.z§_+ %-ot
could span only a partial portion of the domain of z, i.e.

- -;i < 01 <z< cz < + % . In the former case ‘l’i 's become entire domain

functions whereas in the latter Ti 's are called sub domain basis functions.

We solve for In(z) by solving for the unknowns o, in (26). We also

i
convert the infinite dimensional problem HI = Q to a finite dimensional

problem by replacing I with IN s 1.e. we solve the following equation
)

a

=1 1

functions ?i, i=1, 2, ..., N. We next find a unique solution in finite

HVi = Q in the finite dimensional space spanned by the basis

N
dimensional space by weighting the residual Z a

HWi - Q to zero in
i=1

i
the following way

i)"_lcz1 Y, ¥> =<, ¥> for J = 1,2, ..., N 27)

In a matrix form

(6] [a] = (V] (28)
where [G] = [<HW1, ?j>]
(vl = [<q, ‘l’j>]
and the inner product is defined as
+L/2
by 4> = {ng ¢4 (2) ¢,(2)
The unknown & 's in (28) are obtained as

la} = {617} (2] (29)

-1ll~-




The next question that normally arises in whether the sequence IN defined
in (26) approaches any limit I ag N + @, And secondly whether I satisfies
the equation HI = Q. We cannot talk about convergence in the Chebyshev
metric [as defined in (8)] because a Chebyshev norm cannot be derived
from an inner product [2. p. 272]. In other words in an inner product
space we cannot define a Chebyshe; norm. Hence we shall be talking about
only the {2 norm for Galerkin's method. So we shall be discussing about
convergence in the mean. Galerkin's method guarantees the weak conver-

gence of the residuals [from (27)], i.e.

Lt <HI - Q, ¥>+>0 forj=1,2, ...., N (30)
N+ »® IN j

However if H is a bounded operator (i.e. ||H|L£2 < a constant < ®) then

(30) implies strong convergence of the residuals, i.e.

W |EIg-all, =0 G
This has been proved by Mikhlin [9]. Physically, (31) implies that as
N + », the tangential electric field on the surface of the conductor
converges to zero in a least squares fashionm.

Unfortunately in Galerkin's method the ccnvergence of the residuals
to zero in (31) does not imply the convergence of IN to a solution 1 of

HI = Q. The convergence of IN + I in the domain of H is possible if and

ke 2

oy = T, < [T, » ey - all, 32)

So if ||B-l'|L‘2 is unbounded, even though the residuals go to zero, the

only 1f ||E"L||_ . is bounded, as

sequence of solutions Iu may not converge to I. This is in contrast to

B N




the iterative methods where monotonic convergence to I is guaranteed 1f
T and Q are chosen as prescribed.
Since Ilﬁ-lchz is unbounded in this case, the application of

Galerkin's method to HI = Q may not guarantee that'IIIu +0as N+,

- I'Lz2
In other words, there is no quantitative way to describe the convergence
of IN + 1 as various expansion functions are chosen for Wi. Hence we
address the question: For a fixed order of approximation N, h w should
one choosé a set of expansion functions Wi such that the round-off and
the truncation error in the numerical computation of a in (29) is a
minimum?

Suppose the Gram matrix E is generated by the basis functions

[Eij = <Wi, Wj >] then we show in the appendix (Theorem 3) that

cond [G] < cond [ﬁ]. cond (E] (33)

i.e. the condition number of the Galerkin matrix G in (28) is bounded
by the condition number of the operator H in the finite N dimensional
space and the Gram matrix E. Equation (33) 1is valid only in the finite
N dimensional space spanned by ?1. It is important to note that even
though H may not have any eigenvalues in an infinite dimensional space,
it has at least an eigenvalue on a finite dimensional space [2, p. 332].
If the homogeneous equation HI = 0 has only the trivial solution I = 0 and
{8| l.fz 1s bounded then cond [H] < ® and the inequality in (33) has some
meaning because the right hand side of (33) can never be infinity.

So (33) directly implies the following: 1) Use of an orthonormal

set of basis functions ?1 for the current implies

cond [G] < cond [ﬁ] 34)

-13-




i.e. the problem would not be worse conditioned as the original problem.
For this case cond [E] = 1. This will happen for subdomain basis functions

like pulses or entire domain orthonormal basis functions like Y 2 Sin m z
"

form=1, 2, ...., N . (34) also implies that the solution of HI = Q by
Galerkin's method in a finite dimensional space may be a better conditioned
problem than the original problem posed in the finite dimensional space N.
This definitely should be a very strong point for Galerkin's method.

Also from (34) there is no way to tell whether the Galerkin matrix
G associated with the entire domain basis functions would be more ill-
conditioned than the Galerkin matrix associated with the pulse functions.

i11) Use of subdomain basis functions like triangles or piecewise
sinusoids may deteriorate the condition number of the Galerkin matrix
[G] than that of the original problem. This is because cond [E] > 1 for
these cases.

For the case when Ti 's are chosen as piecewise triangles, then E

is a tridiagonal matrix of the form

PQO.
QPQ.
oQP.

vhere P = 3%5 and Q = A% and Az = Since the jth eigenvalue

L
M1
of a tridiagonal matrix is given by [1, p. 70]

Aj = P + .2Q cos (%EEQ

we have

cond [E] < lpl+2]e _, (36)

triangles |P| - 2 |q]




Hence for all dimension N the Galerkin matrix due to piecewise triangle
expansion functions may have a condition number which at most can be three

times as that of the original problem, {i.e.
cond [G] < 3 cond [H]

For the piecewise sinusoids however,

Pa ZkAz-ginZkAz and Q = S:lnkAz-zkAzcoskAz 37
2k Sin” k A 2z 2k Sin" k A z
vhere k = —2*— . In this case cond [E] is bounded by
wavelength
Cond (E] < |2k A z - Sin 2k A z] +2 |Sin k A z - k A z cos k A z]
Sinusoids |2k Az -Sin 2k Az| -2 [Sink Az -k 4 z cos k A z|
L N (38)
In the limit Az + 0
cond [E] < 3 (39)

Sinusoids ~

Thus (39) implies that as the dimension of the problem becomes large the
Galerkin matrix due to piecewise sinusoids are no less numerically ill-
conditioned than the matrix produced by piecewise triangles. It may be
quite possible that for a particular value of X the Galerkin matrix due
to piecevise sinusoidal functions may be better conditioned than that of
the piecewise triangles or even than that of the pulse functions.

In the above analysis an atteapt has been made to provide a worst
case theoretical bound for the condition number of the various matrices

of interest.

It 1is important to stress that the problem we have addressed here is




not vhich set of basis functions would provide the best approximation

for the current, but which type of expansion functions would give rise to

a well conditioned Galerkin matrix G which will be easy to invert numerically.
This is because truncation and round-off error associated with the solution

of (28) is directly related to cond [G].

S. IS A SOLUTION POSSIBLE IF THE EXCITATION IS NOT IN THE RANGE OF THE
OPERATOR?

We discuss the question of existence of a solution for the current
on the aatenna structure when we try to excite it with a source which is
not in the range of the operator H. Clearly, if the excitation is not in
the range of the opecrator then mathematically a solution does not exist.
But numerically one could always find a solution to the integral equation.
This numerical solution has some very interesting properties as outlined
in Theorems 4 and 5 (in the appendix). If we try to numerically solve
an integral equation HI = Q with Q¢ tange of H, then the sequence ofl
solutions IN diverges even though the residuals HI“ - Q associated with
HI = Q may approach zero monotonically. This has been proved in Theorem 4
of the appendix. In theorem 5, we develop further properties of the
solution IN' There we prove that the sequence Iu indeed form an asymptotic
series. The asymptotic series has the property that it converges at
first and then as more and more terws are included in the series, the
series actually diverges. Even though the theorems 4 and 5 have been
proved for the iterative methods, they are also valid for Galerkin's
method. We now present some examples to illustrate when Q is in the

range of operator and when it is not.
As s first example consider the radiation problem where an antenna
of length L and radius a is excited by a delta gap at the center. The

corresponding Hallen's integral equation has the following form (4, p. 321]

/2 2v
[ds' [ dp 1(s') G(e, ') = A Sl k |s] +Dcos ks
-L/2 ©




where A is a known constant and D is unknown. It has been shown by Wu
(4, p. 322] that the solution I(z) of the above equation has a logarithmic

singularity at z = 0 given by

I(z) = - j§ %%6% V [log i S |
z

Hence I(z) to the delta excitation is square integrable but is not bounded.
So the delta function excitation would be in the range of the operator
if the éfs norm is used. The delta function excitation would not be in
the range of the operator if the Chebyshev norm is used.

As a second example consider the scattering from a wire of length L
and radius a irradiated by a broadside incident plane wave. In this

case the integral equation would be of the form

/2 2n
[dz' [dd 1(2') G (z,2') =Dcoskz +FSinkz+Y
-L/2 o

where D, F and Y are constants. By superposition principle there must

exist a current IY(z') such that

+/2 2¢
! dz' ] dé IY(z') G(z,z') = a constant
-L/2 o
/2 2 AL (2")
[d2' [ dp —im G(z,3') =0 (40)
-2 °

If we assume that the function IY(") is square integrable then we

can expand

N
Ly(s') = k§1 @ P (2) (41)




vhere ?k(z) =1 forz. <z <z

k
=0 othervise

k+1

By substituting (41) into (40) yields
N +L/2 ¥A |

)) @ [ dz' [ d¢ [G(z, z,) - G(z, z, )] =0
k=l -L/2 °

2
Since G(:,zk) ¢ G(z.zk+1) then @ - Ofork=1,2, ...., N. Hence an ¥

solution does not exist for this problem. However if we impose the
additional constraints I(t‘%) = 0 then D cos kz + F Sin kz + Y may become
an element in the range of the operator.

Whether in fact a forcing function is in the range of the operator
is difficult to verify both theoretically and numerically. If a forcing
function is not in the range of the operator, theoretically we should
obtain a solution which diverges in an asymptotic sense. However this
postulste may be difficult to verify numerically for certain problems.

As an example consider the partial sum of the series

- 1,1,1 p
S' 1+ 3 + 3 + ry 000 + N

The partial sum Su diverges as N + =, This is because 1{f we look at the

following M terms of the series we find

1, 1, 1 1, 1, 1, 1 1,1
m1+mz+m3+....+m> m> m* m‘.‘..-.+m> 2
Hence

5,2143+43434 ... o

Nowever {f we program the series on the computer snd ask the computer to




give us a result when the addition of the N+l term does not change the

10 (say) we would get a convergent result!

partial sum by 100

In conclusion, we must try to learn theoretically, as much about the
problem as possible. Numerical methods may be applied as a last resort
as it may be the only way to obtain a solution easily. The convergence
of the numerically computed results is determined to a large extent by

the theoretical analysis of the problem rather than apparent convergences

in numerical computations.

6. CONCLUSION

In summary, we have brought out the following features.

1) The thin wire E-field Pocklington integral operator is unbounded
wvhereas the Hallen E-field operator is bounded.

2) The inverse operator for Hallen E-field integral equation is unbounded.

3) A unified theory for the various itérative methods showing how
the Fredholm equation of the first kind has been converted to a Fredholm
equation of the second kind is presented.

4) The conditions under which the iterative methods converge both
for che'i?z norm and the Chebyshev norm has been presented.

5) The monotonic rate of convergence of the sequence of solutions
assoclated with iterative methods have been established for certain
values of T and for Q £ R(H).

6) The numerical stability in the solution of the matrix equations
for Galerkin's method for various expansion functions is examined and

7) The sequence of solutions IN forms an asymptotic series for both
the {terative and Galerkin's method when Q ¢ R(H).
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8. APPENDIX -

Theorem 2: For all Q € Range of H, the sequence In generated by the
recursion

I

a+l
Where U is the identity matrix and (,T Hl|< 2 with the initial guess Io = Q'

~[uv-m) 1 -10ABI +Q (A.1)

converges to Ie (the exact solution, if it exists) in the norm, i.e.
lim HIn - Iell + 0 and the convergence is strictly monotone increasing,
o e
i.e., Ik 4 Ie.

Proof: The iterative process (A.l) converges as long as the norm of
B is less than one. It is clear that if |1|+||H]| < 2 then

[IB]] =llu- TH|| < 1. Now we have

- - - 0 -
Ie In+l - Ie BIn Q' = B[Ie In]

By taking the norm of both sides and simplifying
o+l
Hle- I+ I < HB”-HIe - In” i_{”B“} . er - 10”

Since ||B]| < 1, as m we have

e |jT. - I .|l =0
o e nt+l
and thus In+1 converges to the exact solution.

That Ik + Ie is seen easily as

€atl

and
en A'Ie - In
are related by

en+1 =B ‘n

«21-

T e L i

-




and so
ey !l < HBli-lle Il < lle ||
and with equality if and only if €, = 0. It follows that if n is the

smallest integer for which ||e Ienll then

n+1H - |
e, =0, forn>n and |\En+1|| < ||en[| forn <, i.e.

In + Ie and theorem 2 is proved.

Theorem 3: Consider the operator equation HI = Q in a finite dimensional

space N. Let the unknown I be expandedAin terms of the normalized basis
A___[H]
max

~ o the given N dimensional
A (H]
min

A
functions ¢i. Define cond{H] =
space.

Let cond[G] and cond[E] be the condition numbers of the Galerkin matrix
[Gij = <Hwi,wj>] and of the Gram matrix [Eij = <wi,wj>], respectively.
Then

cond[G] < cond [ﬁ]. cond (E]

N
Proof: Llet I =] @ ¥, then from [2, p. 341]
- 1=1
N N - . A N '2 A
|at, (=1} Tay 3 <mug, vl < (B T oo 01% = [lalls <1
1=1 3=1 1=1

A 2
< Hajfe a (E){laf]

since <I,I> = ||a||2 we have

A
lemr, ) {l8]]e Ay (E]

<1,I>

ém-‘ e &

| oo




.'7—-—-—.._..,~—(-~..- T tom o _—

from which it follows that

A
Apag(C1 < [[HI[+ A___[E]

N
Also since
2
I T N S DI T
|<u1,1>| > AT AT 2 AT
[ (a1 [Ta 1]
so
|<HI, 1>] N Mﬂnm]
A=l
<IL,I> ]
from which it follows
A [E]
min
‘ainlCl 2 g
nin [[H ]

Hence we have

A___[G] I\ A A___[E]

== < lafle fetyp. mex
Amin[G] Amin[E]
cond[G] < cond[ﬁ]° cond [E].

Theorem 4: If Q ¢ R(H) then the sequence of approximations In generated

by

- +
I BI_+Q

n+l

with the initialization I° = Q yields the following relationships

1) 1lim ||Rn+1 - RnII = 0, where Rn = Hln -Q

b+ 2o

and

11) Um ||I]] = =
e n




Proof: 1) We have

Rn+-1 - Rh - H[Iu+1 -

and since the operator H is bounded {i.e. ||H]| < M) we have

Ll

Ry - R < [, - 1 [[ [le, - e |l

<M |[B-uff - [le ]l <™. [[B-ul]- {HBII}?IIEOH

_ n
Hence ii: [an+1 - Rhll =0 as ii: {}|8%]]} » o.

ii) If 1lim ]IInII = @ does not hold, then we have lim Illnll <™
e o

(1.e a bounded sequence). Thus there is a subsequence I; which is
bounded in norm. Now if we put the operator equation in a Hilbert space
setting (now we can only talk about the Azfz norm only) and since a
Hilbertspace is weakly compact [2] one can always extract from I; another
sequence I; which converges weakly to some element I of the Hilbert
space, i.e. I; % 1. Also we have from i) ii: H In 3 Q (strong

convergence in norm). However as H is a bounded operator we have

Hm H I 2 ur

o

and ;lso S
lim H In + Q
nree

Since the weak and strong limits of a sequence must concide, H I; = Q.
This means Q € R(H), a contradiction.

Theorem 5: The sequence In as derived in 11) of Theorem 4 indeed
forms an asymptotic series (i.e. for good accuracy the series has to be
truncated after a finite number of terms otherwise the results may be

worse).
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Proof: To demonstrate the source of divergence in In we assume

HI = Q, with I, = Q_ + AQ

then
n
In Io [B] Io + On_l forn <1
where a-1
i
8 .= 1 [B] AQ
n-1 i=o

If Q  + AQ £ R(H) then by theorem 4, lim ||9n_1|| = », since
neo

1lim {B]n Io = 0, Observe that this holds irrespective of the size of
n>wo

|AQ|. Now the error in the iterates is obtained as

-— n -
G "L - (8] L 9n--l

Note that the norm of the first term is monotonically decreasing and
thus it is evident that the #1gorithm should be terminated after a
certain optimum number of steps. Unfortunately the exact number of
iterations.depends on the particular Q under consideration and the

growth rate of ||6n_1|| versus the decay rate of ||(B]" Ioll.
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